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Overview

Inverse kinematic problem

Closed-form methods
Geometric  
Algebraic  

Numerical methods
Gradient descent
Jacobian based and pseudoinverse based methods 

Summary
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Forward Kinematics

Direct kinematic problem

Input: Joint angle positions of the robot

Output: Pose of the end effector

Direct kinematics:

HERE!

Where is my
Hand?

end effector
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Inverse Kinematics

Inverse kinematic problem:

Input: Target pose of the end effector

Output: Joint angle positions

Target pose of 
end effector

Inverse kinematics: 
Determines the joint angles

How do I move my 
hand to the target?
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Inverse Kinematics
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Overview: Direct and Inverse Kinematics

Joint angle
(configuration space)

Transformation Cartesian coordinates
(task space)

Direct Kinematics

𝒙 = 𝑓(𝜽)

𝜃1, … , 𝜃𝑛 ∈ 𝑪 ⊆ ℝ𝒏 𝒙 ∈ 𝑊 = ℝ𝒎

𝑛: Degrees of freedom of movement
𝑚: Degrees of freedom

Inverse Kinematics

𝜃 = 𝑓−1 (𝒙) e.g. position and location 
of the end effector 𝒙𝑇𝐶𝑃
= 𝑥, 𝑦, 𝑧, 𝛼, 𝛽, 𝛾



Robotics I: Introduction to Robotics | Chapter 037

Inverse Kinematics: Problem Definition

Joint space
(configuration space)
𝜽𝟏, … , 𝜽𝒏 ∈ 𝑪 ⊆ ℝ𝒏

Cartesian space
(task space)
𝑾 = ℝ𝒎Direct Kinematics

Inverse Kinematics

𝑛: Degrees of freedom of movement
𝑚: Degrees of freedom
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Inverse Kinematics: Bijection

Direct Kinematics: 𝒙 = 𝑓 𝜽 , 𝒙 ∈ 𝑊, 𝜽 ∈ 𝐶
Inverse Kinematics: 𝜽 = 𝑓−1(𝒙)

Inverse function 𝑓−1 only exists if 𝑓 is bijective (injective und surjective)
Function 𝑓: 𝐶 → 𝑊 is injective if for each element in 𝑊 there is at most one 
element from C (none at all, exactly one, but not more than one)

𝑓 𝜽1 = 𝑓 𝜽2 ⇒ 𝜽1 = 𝜽2

Function 𝑓: 𝐶 → 𝑊 is surjective if for each element in 𝑊 at least one element from 
C exists

∀𝒙 ∈ 𝑊: ∃𝜽 ∈ 𝐶: 𝑓 𝜽 = 𝒙

In general, the forward kinematics 𝑓 is not bijective
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Inverse Kinematics: Injection

Forward kinematics is generally not injective (𝑓 𝒙1 = 𝑓 𝒙2 ⇒ 𝒙1 = 𝒙2)

𝜽 = 𝜃1, 𝜃2 ∈ 𝐶, 𝚽 = Φ1, Φ2 ∈ 𝐶

𝑓 𝜽 = 𝑓 𝚽 = 𝒙𝑇𝐶𝑃

𝑓−1 𝒙𝑇𝐶𝑃 = ?, 𝜽 o𝑟 𝚽?

𝒙𝑇𝐶𝑃

𝜃1

𝒙𝑇𝐶𝑃
𝜃2

𝒙𝑇𝐶𝑃

Φ2

Φ1
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Inverse Kinematics: Surjection

Forward kinematics is generally not surjective (∀𝒙 ∈ 𝑊: ∃𝜽 ∈ 𝐶: 𝑓 𝜽 = 𝒙)

𝑓 𝜽 ∈ ℝ2 𝑓−1 𝒙𝐺𝑜𝑎𝑙 = ?

There is no 𝜽 ∈ 𝐶 for which 𝑓 𝜽 = 𝒙𝐺𝑜𝑎𝑙.

Can be partially remedied by defining the workspace 𝑊 ⊂ ℝ2.

𝒙𝐺𝑜𝑎𝑙𝒙𝐺𝑜𝑎𝑙
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Position of the end effector (forward kinematics)

𝒙 = 𝑓 𝜽 =
cos 𝜃1 + cos 𝜃1 + 𝜃2
sin 𝜃2 + sin 𝜃1 + 𝜃2

For a given target position 𝒙𝐺𝑜𝑎𝑙 the distance from 
the current position to the target is: 

Δ𝑥 = 𝒙𝐺𝑜𝑎𝑙 − 𝒙

Inverse kinematics: Find 𝜽 for which Δ𝑥 = 0.

Inverse Kinematics: Example of a 2 DoF Robot (1)

𝒙𝐺𝑜𝑎𝑙

𝒙

𝜃1

𝜃2 Δ𝑥 = 𝒙𝐺𝑜𝑎𝑙 − 𝒙
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Inverse Kinematics: Example of a 2 DoF Robot (2)

How does the distance change Δ𝑥
for different joint angles 𝜽 = (𝜃1, 𝜃2)?

for different target positions 𝒙𝐺𝑜𝑎𝑙?

Concrete: 𝒙𝐺𝑜𝑎𝑙 = 0, 2
𝑇

Solutions: 𝜽𝟏 =
𝜋

4
,
𝜋

2
𝑜𝑟 𝜽𝟐 =

3𝜋

4
,
3𝜋

2

Δ𝑥 = 𝒙𝐺𝑜𝑎𝑙 − 𝒙

𝜃1

𝜃2

𝒙𝐺𝑜𝑎𝑙 𝒙𝐺𝑜𝑎𝑙
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Inverse Kinematics: Example of a 2 DoF Robot (3)

What happens at 𝒙𝐺𝑜𝑎𝑙 = 0, 2.1 𝑇 outside the workspace?

No solutions

𝒙𝐺𝑜𝑎𝑙

𝜃1 =
𝜋

2

𝜃2 = 0

Δ𝑥 = 𝒙𝐺𝑜𝑎𝑙 − 𝒙

𝜃1

𝜃2
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Inverse Kinematics: Example of a 2 DoF Robot (4)

How does the distance Δ𝑥 change for 𝒙𝐺𝑜𝑎𝑙 = 0, 0 𝑇?

Infinite number of solutions: 𝜽 = (𝜃1, 𝜋)
𝜃2 = 𝜋: The second arm element is folded 

onto the first arm element

𝜃1 can be selected as required

𝒙𝐺𝑜𝑎𝑙

𝜃1 as
required

𝜃2 = 𝜋

𝜃1

𝜃2
Δ𝑥 = 𝒙𝐺𝑜𝑎𝑙 − 𝒙

𝒙𝐺𝑜𝑎𝑙
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Inverse Kinematics: Example of a 2 DoF Robot (5)

𝒙𝐺𝑜𝑎𝑙 = 0, 𝑦 𝑇

Δ𝑥 = 𝒙𝐺𝑜𝑎𝑙 − 𝒙

𝒙𝐺𝑜𝑎𝑙
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Inverse Kinematics: Example of a 2 DoF Robot (6)

How does Δ𝑥 change for different target positions 𝒙𝐺𝑜𝑎𝑙 = 0, 𝑦𝑔𝑜𝑎𝑙
𝑇

𝑦𝑔𝑜𝑎𝑙 = 1.0

𝑦𝑔𝑜𝑎𝑙 = 1.5

𝑦𝑔𝑜𝑎𝑙 = 1.1

𝑦𝑔𝑜𝑎𝑙 = 1.6

𝑦𝑔𝑜𝑎𝑙 = 1.2

𝑦𝑔𝑜𝑎𝑙 = 1.7

𝑦𝑔𝑜𝑎𝑙 = 1.3

𝑦𝑔𝑜𝑎𝑙 = 1.8

𝑦𝑔𝑜𝑎𝑙 = 1.4

𝑦𝑔𝑜𝑎𝑙 = 1.9
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Inverse Kinematics: Example of a 2 DoF Robot (7)

In the case of a 2 DoF planar robot, there are four different cases:

There are two independent solutions (normal case).

There is exactly one solution (boundary of the workspace).

There is no solution (outside the workspace).

There are infinitely many solutions (target point in the base).

𝒙𝐺𝑜𝑎𝑙

Two solutions

𝒙𝐺𝑜𝑎𝑙

𝜃1 =
𝜋

2

𝜃2 = 0

One solution

𝒙𝐺𝑜𝑎𝑙

𝜃1 =
𝜋

2

𝜃2 = 0

No solution

𝒙𝐺𝑜𝑎𝑙

𝜃1 as
required

𝜃2
= 𝜋

Infinitely many solutions



Robotics I: Introduction to Robotics | Chapter 0318

Inverse Kinematics: Example of a 3 DoF Robot

3 DoF robot: What does the solution space look like? 

𝒙𝐺𝑜𝑎𝑙 = 0, 𝑦 𝑇

Δ𝑥 = 𝒙𝐺𝑜𝑎𝑙 − 𝒙

𝒙𝐺𝑜𝑎𝑙



Robotics I: Introduction to Robotics | Chapter 0319

Pose of the TCP

𝑇𝑇𝐶𝑃 =

𝑛𝑥 𝑜𝑥 𝑎𝑥 𝑝𝑥
𝑛𝑦 𝑜𝑦 𝑎𝑦 𝑝𝑦
𝑛𝑧 𝑜𝑧 𝑎𝑧 𝑝𝑧
0 0 0 1

Kinematic model:

𝑇𝑇𝐶𝑃 =
𝑅𝑒𝑓

𝑇𝑇𝐶𝑃 𝜽 = 𝐴0,1 𝜃1 ⋅ 𝐴1,2 𝜃2 ⋅ … ⋅ 𝐴𝑛−2,𝑛−1 𝜃𝑛−1 ⋅ 𝐴𝑛−1,𝑛(𝜃𝑛)

Given: 𝑇𝑇𝐶𝑃, Wanted: 𝜽

Approach: Solve the equation for 𝜽 (non-linear problem)

Inverse Kinematics: Procedure

𝒂
𝒐

𝒏
𝒑

𝜃6

𝜃5
𝜃4
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Overview

Inverse kinematic problem

Closed-form methods
Geometric  
Algebraic  

Numerical methods
Gradient descent
Jacobian based and pseudoinverse based methods 

Summary
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Geometric Method: Procedure

Use geometric relationships to determine the joint angles 𝜽 from the 𝑇𝑇𝐶𝑃

The kinematic model is not used directly.

Application of:
Trigonometric functions

Sine / cosine theorems
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Geometric Method: Example

With cosine theorem:

𝑥2 + 𝑦2 = 𝑙1
2 + 𝑙2

2 − 2𝑙1𝑙2cos(𝜃2)

cos 𝜃2 = −
𝑥2 + 𝑦2 − 𝑙1

2 − 𝑙2
2

2𝑙1𝑙2
𝜃2 = 𝑎𝑐𝑜𝑠 𝑢

𝑥

𝑦

𝑙1

𝑙2

𝜃2

𝑢
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Geometric Method: Example (2)

𝑙2
2 = 𝑥2 + 𝑦2 + 𝑙1

2 − 2𝑙1 𝑥2 + 𝑦2 cos(𝜓)

→ cos 𝜓 =
𝑥2+𝑦2+𝑙1

2 −𝑙2
2

2𝑙1 𝑥2+𝑦2

𝑥

𝑦

𝑙1

𝑙2

𝜃2

𝜓

𝜃1


𝑤

𝜓 = 𝑎𝑐𝑜𝑠 𝑤
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tan 𝛽 =
𝑦

𝑥
→ 𝛽 = atan

𝑦

𝑥

𝜃1 = 𝜓 + 𝛽

Geometric Method: Example (3)


𝜃1

𝑥

𝑦

𝑙1

𝑙2

𝜃2
𝜓
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Geometric Method: Polynomialization

Transcendental equations are usually difficult to solve, as the variable 𝜃
usually appears in the form cos 𝜃 or sin 𝜃.

Tool: Substitution (Tangent half-angle substitution) 

𝑢 = tan
𝜃

2

Using:

cos 𝜃 =
1−𝑢2

1+𝑢2
sin 𝜃 =

2𝑢

1+𝑢2

➔ Solving polynomial equations
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Overview

Inverse kinematic problem

Closed-form methods
Geometric  
Algebraic

Numerical methods
Gradient descent
Jacobian based and pseudoinverse based methods 

Summary
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Algebraic Methods

Equating the TCP pose 𝑇𝑇𝐶𝑃 and transformation 
𝑅𝑒𝑓

𝑇𝑇𝐶𝑃 from the kinematic 
model:

𝑇𝑇𝐶𝑃 =
𝑅𝑒𝑓

𝑇𝑇𝐶𝑃 𝜽

Comparison of the coefficients of the two matrices

𝑎11 … 𝑎1𝑛
⋮ ⋱ ⋮

𝑎𝑛1 … 𝑎𝑛𝑛
=

𝑏11 … 𝑏1𝑛
⋮ ⋱ ⋮
𝑏𝑛1 … 𝑏𝑛𝑛

⇒ 𝑎𝑖𝑗 = 𝑏𝑖𝑗 ∀𝑖, 𝑗 ∈ [1: 𝑛]

16 equations for homogeneous matrices in 3D (4 trivial: 0 = 0, 1 = 1)
➔ 12 non-trivial equations
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Algebraic Methods: Example (1)

𝜃1

𝜃2

𝑙1

𝑙2

From kinematic model

𝑅𝑒𝑓
𝑇𝑇𝐶𝑃 =

𝑐12 −𝑠12 0 𝑙1𝑐1 + 𝑙2𝑐12
𝑠12 𝑐12 0 𝑙1𝑠1 + 𝑙2𝑠12
0 0 1 0
0 0 0 1

𝑐12 = cos 𝜃1 + 𝜃2 ; 𝑠12 = 𝑠𝑖𝑛(𝜃1 + 𝜃2)

Desired position of the end effector in space:
Position (𝑥, 𝑦), orientation(𝜙)

𝑃𝑇𝐶𝑃 =

𝑐𝜙 −𝑠𝜙 0 𝑥

𝑠𝜙 𝑐𝜙 0 𝑦

0 0 1 0
0 0 0 1
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Algebraic Methods: Example (2)

Coefficient comparison
𝑐𝜙 −𝑠𝜙 0 𝑥

𝑠𝜙 𝑐𝜙 0 𝑦

0 0 1 0
0 0 0 1

=

𝑐12 −𝑠12 0 𝑙1𝑐1 + 𝑙2𝑐12
𝑠12 𝑐12 0 𝑙1𝑠1 + 𝑙2𝑠12
0 0 1 0
0 0 0 1

𝑐𝜙 = 𝑐12
𝑠𝜙 = 𝑠12
𝑥 = 𝑙1𝑐1 + 𝑙2𝑐12
𝑦 = 𝑙1𝑠1 + 𝑙2𝑠12

1
2
3
4

➔ Resolve for 𝜽

𝜃1

𝜃2

𝑙1

𝑙2
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Algebraic Methods: Example (3)

Sum of the squares of (3) and (4)

𝑥2 = 𝑙1
2𝑐1

2 + 2𝑙1𝑐1𝑙2𝑐12 + 𝑙2
2𝑐12

2

𝑦2 = 𝑙1
2𝑠1

2 + 2𝑙1𝑠1𝑙2𝑠12 + 𝑙2
2𝑠12

2

𝑠1
2 + 𝑐1

2 = 1; 𝑠12
2 + 𝑐12

2 = 1

𝑥2 + 𝑦2 = 𝑙1
2 + 𝑙2

2 + 2𝑙1𝑙2 c1c12 + s1s12 = 𝑙1
2 + 𝑙2

2 + 2𝑙1𝑙2𝑐2

𝑐2 =
𝑥2 + 𝑦2 − 𝑙1

2 − 𝑙2
2

2𝑙1𝑙2

Two solutions for 𝜃2 are possible. Why?
➔ Redundancy

𝜃2

𝜃1

𝜃2

𝑙1

𝑙2
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Algebraic Methods: Example (4)

Calculation of 𝜽𝟏

Coefficient comparison:
𝑥 = 𝑙1𝑐1 + 𝑙2𝑐12, 𝑦 = 𝑙1𝑠1 + 𝑙2𝑠12

Addition theorem: cos 𝜃1 + 𝜃2 = cos 𝜃1 cos 𝜃2 − sin 𝜃1 sin(𝜃2)

𝑥 = 𝑙1𝑐1 + 𝑙2 𝑐1𝑐2 − 𝑠1𝑠2
𝑦 = 𝑙1𝑠1 + 𝑙2 𝑠1𝑐2 + 𝑠2𝑐1

Simplify:
𝑥 = 𝑙1 + 𝑙2𝑐2 𝑐1 − 𝑙2𝑠2 𝑠1
𝑦 = 𝑙1 + 𝑙2𝑐2 𝑠1 + 𝑙2𝑠2 𝑐1

Resolution difficult. 
Help with templates for typical equations or symbolic math in Matlab, Maple, Mathematica.
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Algebraic Methods: Solution algorithm

Problem:
Often not all joint angles can be determined from the 12 equations.

Approach:
Knowledge of the transformations increases the chance of solving the 
equations.

Given:
The transformation matrices 𝐴0,1 ⋅ 𝐴1,2 ⋅ … ⋅ 𝐴𝑛−1,𝑛 and 𝑇𝑇𝐶𝑃

Wanted:
The joint angles 𝜃1to 𝜃𝑛
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Algebraic Methods: Procedure

𝑇𝑇𝐶𝑃 = 𝐴0,1 𝜃1 ⋅ 𝐴1,2 𝜃2 ⋅ 𝐴2,3 𝜃3 ⋅ 𝐴3,4 𝜃4 ⋅ 𝐴4,5 𝜃5 ⋅ 𝐴5,6 𝜃6
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Algebraic Methods: Procedure

Starting point: the matrix equation

𝑇𝑇𝐶𝑃 = 𝐴0,1 𝜃1 ⋅ 𝐴1,2 𝜃2 ⋅ 𝐴2,3 𝜃3 ⋅ 𝐴3,4 𝜃4 ⋅ 𝐴4,5 𝜃5 ⋅ 𝐴5,6 𝜃6

Procedure:
1. Invert 𝐴0,1(𝜃1) and multiply both sides of the equation by 𝐴0,1

−1

2. Try to find an equation from the newly created system of equations that contains only one 
unknown and solve this equation for the unknown.

3. Try to find an equation in the system of equations that can be solved by substituting the 
solution found in the last step for one unknown.

4. If no more solutions can be found, another matrix (𝐴1,2(𝜃2)) must be inverted.

5. Repeat steps 1 - 4 until all joint angles have been determined.
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Algebraic Methods: Equations

𝐴0,1
−1 ⋅ 𝑇𝑇𝐶𝑃 = 𝐴1,2 ⋅ 𝐴2,3 ⋅ 𝐴3,4 ⋅ 𝐴4,5 ⋅ 𝐴5,6

𝐴1,2
−1 ⋅ 𝐴0,1

−1 ⋅ 𝑇𝑇𝐶𝑃 = 𝐴2,3 ⋅ 𝐴3,4 ⋅ 𝐴4,5 ⋅ 𝐴5,6
𝐴2,3
−1 ⋅ 𝐴1,2

−1 ⋅ 𝐴0,1
−1 ⋅ 𝑇𝑇𝐶𝑃 = 𝐴3,4 ⋅ 𝐴4,5 ⋅ 𝐴5,6

𝐴3,4
−1 ⋅ 𝐴2,3

−1 ⋅ 𝐴1,2
−1 ⋅ 𝐴0,1

−1 ⋅ 𝑇𝑇𝐶𝑃 = 𝐴4,5 ⋅ 𝐴5,6
𝐴4,5
−1 ⋅ 𝐴3,4

−1 ⋅ 𝐴2,3
−1 ⋅ 𝐴1,2

−1 ⋅ 𝐴0,1
−1 ⋅ 𝑇𝑇𝐶𝑃 = 𝐴5,6

𝑇𝑇𝐶𝑃 ⋅ 𝐴5,6
−1 = 𝐴0,1 ⋅ 𝐴1,2 ⋅ 𝐴2,3 ⋅ 𝐴3,4 ⋅ 𝐴4,5

𝑇𝑇𝐶𝑃 ⋅ 𝐴5,6
−1 ⋅ 𝐴4,5

−1 = 𝐴0,1 ⋅ 𝐴1,2 ⋅ 𝐴2,3 ⋅ 𝐴3,4

𝑇𝑇𝐶𝑃 ⋅ 𝐴5,6
−1 ⋅ 𝐴4,5

−1 ⋅ 𝐴3,4
−1 = 𝐴0,1 ⋅ 𝐴1,2 ⋅ 𝐴2,3

𝑇𝑇𝐶𝑃 ⋅ 𝐴5,6
−1 ⋅ 𝐴4,5

−1 ⋅ 𝐴3,4
−1 ⋅ 𝐴2,3

−1 = 𝐴0,1 ⋅ 𝐴1,2

𝑇𝑇𝐶𝑃 ⋅ 𝐴5,6
−1 ⋅ 𝐴4,5

−1 ⋅ 𝐴3,4
−1 ⋅ 𝐴2,3

−1 ⋅ 𝐴1,2
−1 = 𝐴0,1

𝑻𝑻𝑪𝑷 = 𝑨𝟎,𝟏 ⋅ 𝑨𝟏,𝟐 ⋅ 𝑨𝟐,𝟑 ⋅ 𝑨𝟑,𝟒 ⋅ 𝑨𝟒,𝟓 ⋅ 𝑨𝟓,𝟔

12 non-trivial 
equations from 
each matrix 
equation
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Overview

Inverse kinematic problem

Closed-form methods
Geometric  
Algebraic

Numerical methods
Gradient descent
Jacobian based and pseudoinverse based methods 

Summary
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Numerical Methods: Jacobian Matrix (Repetition)

Given a differentiable function 𝑓: ℝ𝑛 → ℝ𝑚

The Jacobian matrix contains all first-order partial derivatives of 𝑓. For an 𝒂 ∈ ℝ𝑛 the
following applies:

𝐽𝑓 𝒂 =
𝜕𝑓𝑖
𝜕𝑥𝑗

𝒂

𝑖,𝑗

=

𝜕𝑓1
𝜕𝑥1

(𝒂) ⋯
𝜕𝑓1
𝜕𝑥𝑛

(𝒂)

⋮ ⋱ ⋮
𝜕𝑓𝑚
𝜕𝑥1

(𝒂) ⋯
𝜕𝑓𝑚
𝜕𝑥𝑛

(𝒂)

∈ ℝ𝑚×𝑛

The following applies:

ሶ𝒙 𝑡 =
𝑑𝑓(𝜃 𝑡 )

𝑑𝑡
= 𝐽𝑓 𝜃 𝑡 ⋅ ሶ𝜃(𝑡)
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Numerical Methods

TCP pose via forward kinematics:
𝒙𝑇𝐶𝑃,𝑡 = 𝑓 𝜽𝒕

Jacobian matrix provides movement tangents 
in the current position 𝜽𝑡:

𝐽𝑓 𝜽𝑡 =
𝜕𝑓 𝜽𝑡
𝜕𝜽𝑡

Assumption: Model valid for small Δ𝜃

Linear approximation of the movement

Approximation error 𝜀 exists

𝒙𝑇𝐶𝑃,𝑡

𝐽𝑓 𝜽𝑡 ⋅ Δ𝜽

𝜀
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Numerical Methods: Example

𝐽𝑓 𝜃 = 𝐽𝑓(45°) = 𝑠 ⋅
1
−1

, s ∈ ℝ

x

y

𝒙𝑇𝐶𝑃

𝒙′𝑇𝐶𝑃

𝜃 = 45°
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Overview

Inverse kinematic problem

Closed-form methods
Geometric  
Algebraic  

Numerical methods
Gradient descent
Jacobian based and pseudoinverse based methods 

Summary
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Gradient Descent: Optimization Problem

Forwards kinematics: 
𝒙 = 𝑓 𝜽 , 𝒙 ∈ 𝑊 ⊂ ℝ𝑚, 𝜽 ∈ 𝐶 ⊂ ℝ𝑛

Error function for target pose 𝒙𝐺𝑜𝑎𝑙 ∈ 𝑊:

e(𝜽) = 𝒙𝐺𝑜𝑎𝑙 − 𝑓 𝜽 2

Solutions for inverse kinematics for:      𝑒 𝜽 = 0

Approach: Gradient descent
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Gradient Descent: Derivation of the Error Function

Error function for target pose 𝒙𝐺𝑜𝑎𝑙 ∈ 𝑊: e(𝜽) = 𝒙𝐺𝑜𝑎𝑙 − 𝑓 𝜽 2

Derivation with chain rule:

𝜕e

𝜕𝜽
=
𝜕 𝒙𝐺𝑜𝑎𝑙 − 𝑓 𝜽 2

𝜕 𝒙𝐺𝑜𝑎𝑙 − 𝑓 𝜽
⋅
𝜕 𝒙𝐺𝑜𝑎𝑙 − 𝑓 𝜽

𝜕𝜽

𝜕e

𝜕𝜽
= −2 ⋅ 𝒙𝐺𝑜𝑎𝑙 − 𝑓 𝜽

𝑇
⋅ 𝐽(𝜽)

𝜕e

𝜕𝜽

𝑇

= 2 ⋅ 𝐽𝑇 𝜽 ⋅ 𝑓 𝜽 − 𝒙𝐺𝑜𝑎𝑙

𝐹 𝒙 = 𝐴𝒙 − 𝒃 2

𝛻𝐹 𝒙 = 2 𝐴𝑇(𝐴𝒙 − 𝒃)

𝒙𝑇 ⋅ 𝐴 𝑇 = 𝐴𝑇 ⋅ 𝒙

Note: 
𝜕e

𝜕𝜽
∈ ℝ1×𝑚 is 

a row vector
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Gradient Descent: Algorithm

Error function for target pose 𝒙𝐺𝑜𝑎𝑙 ∈ 𝑊: e(𝜽) = 𝒙𝐺𝑜𝑎𝑙 − 𝑓 𝜽 2

Gradient: 𝑔𝑟𝑎𝑑 𝑒 =
𝜕e

𝜕𝜽
= 2 ⋅ 𝐽𝑇 𝜽 ⋅ 𝑓 𝜽 − 𝒙𝐺𝑜𝑎𝑙

Select start configuration: 𝜽0 ∈ 𝐶, 𝑖 = 0

Step length 𝛾 ∈ ℝ

As long as e 𝜽𝑖 > 𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑: # Limit value

𝜽𝑖+1 = 𝜽𝑖 − 𝛾 ⋅ 2 ⋅ 𝐽𝑇 𝜽𝑖 ⋅ 𝑓 𝜽𝑖 − 𝒙𝐺𝑜𝑎𝑙 # − Gradient
𝑖 = 𝑖 + 1
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Gradient Descent: Example (1)

2-DoF planar robot: 𝜽 = 𝜃1, 𝜃2 ∈ 𝐶

Target pose 𝒙𝐺𝑜𝑎𝑙 = 0, 1.2 𝑇

𝜃1

𝜃2
e(𝜽) = 𝒙𝐺𝑜𝑎𝑙 − 𝑓 𝜽 2

𝒙𝐺𝑜𝑎𝑙
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Gradient Descent: Example (2)

2-DoF planar robot: 𝜽 = 𝜃1, 𝜃2 ∈ 𝐶

Target pose 𝒙𝐺𝑜𝑎𝑙 = 0, 1.2 𝑇

Gradient field

𝜃1

𝜃2
e(𝜽) = 𝒙𝐺𝑜𝑎𝑙 − 𝑓 𝜽 2

𝒙𝐺𝑜𝑎𝑙
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2-DoF planar robot: 𝜽 = 𝜃1, 𝜃2 ∈ 𝐶

Target pose 𝒙𝐺𝑜𝑎𝑙 = 0, 1.2 𝑇

Gradient field

Step length: 𝛾 = 0.2

Start: 𝜽0 = 𝜋,
𝜋

2

𝑇

Gradient Descent: Example (3)

𝒙𝐺𝑜𝑎𝑙

𝜃1

𝜃2
e(𝜽) = 𝒙𝐺𝑜𝑎𝑙 − 𝑓 𝜽 2

𝜽0 = 𝜋, Τ𝜋 2 𝑇

𝜽10
≈ 0.608,1.904 𝑇
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2-DoF planar robot: 𝜽 = 𝜃1, 𝜃2 ∈ 𝐶

Target pose 𝒙𝐺𝑜𝑎𝑙 = 0, 1.2 𝑇

Gradient field

Step length: 𝛾 = 0.2

Different starting points:

𝜽0 = 𝜋, 𝜃2,𝑠𝑡𝑎𝑟𝑡
𝑇

Gradient Descent: Example (4)

𝜃1

𝜃2
e(𝜽) = 𝒙𝐺𝑜𝑎𝑙 − 𝑓 𝜽 2

𝒙𝐺𝑜𝑎𝑙
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Overview

Inverse kinematic problem

Closed-form methods
Geometric  
Algebraic  

Numerical methods
Gradient descent
Jacobian based and pseudoinverse based methods 

Summary
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Numerical Methods: Difference Quotient

1) Actual movement according to:

ሶ𝒙 𝑡 = 𝐽 𝜽 ሶ𝜽 𝑡

2) Approximate movement in the interval Δ𝑡 using 
the difference quotient:

Δ𝒙 ≈ 𝐽 𝜽 Δ𝜽

Approximation of the change by transition from the 
differential quotient to the difference quotient

Linearization of the problem

(2)(1)
Δ𝒙

Δ𝜽
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Numerical Methods: Inversion

Achieved so far: Local, linear approach to forward kinematics

Δ𝒙 = 𝒇 𝜽 + Δ𝜽 − 𝒇 𝜽 ≈ 𝐽𝑓 𝜽 ⋅ Δ𝜽

Wanted: Solution for the inverse problem

Δ𝜽 ≈ 𝒈 Δ𝒙 = 𝐽𝑓
−1 𝜽 ⋅ Δ𝒙

Inversion is possible if:
𝐽𝑓 𝜽 is quadratic (Non-redundant robots, d.h. 𝑛 = 𝑚 )

𝐽𝑓 𝜽 has full rank



Robotics I: Introduction to Robotics | Chapter 0351

Numerical Methods: Pseudoinverse

Pseudoinverse: Generalization of the inverse matrix to singular and non-
square matrices 𝐴 ∈ ℝ𝑚×𝑛 (redundant robots)

Definition: Moore-Penrose Pseudoinverse (with full line rank*)

The following apply:
𝐴+ + = 𝐴

𝐴𝑇 + = 𝐴+ 𝑇

𝜆𝐴 + = 𝜆−1𝐴+, for a 𝜆 ≠ 0

*Full line rank is usually given for 𝐽𝑓. Exception: singularities!

𝐴+ = 𝐴𝑇 𝐴𝐴𝑇 −1
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Pseudoinverse: Derivation 

Calculate the best possible solution of a system of linear equations in terms of the 
sum of least squares.

𝐴𝒙 = 𝒃 // 𝐴 is a rectangular matrix, not invertible
𝐴𝑇𝐴𝒙 = 𝐴𝑇𝒃 // 𝐴𝑇𝐴 is a square matrix, invertible

(𝐴𝑇𝐴)−1𝐴𝑇𝐴
𝐼

𝒙 = (𝐴𝑇𝐴)−1𝐴𝑇𝒃

ෝ𝒙 = (𝐴𝑇𝐴)−1𝐴𝑇

𝐴+

𝒃 // ෝ𝒙 is a least squares solution of 𝐴𝒙 = 𝒃

ෝ𝒙 = 𝐴+𝒃 // 𝐴+ is the pseudo-inverse of 𝐴
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Pseudoinverse 

The pseudo inverse minimizes the error 𝐽𝑓 ሶ𝜽 − ሶ𝒙
2

; it finds the norm-minimal 

solution ሶ𝜽
2

min
𝜽 ሶ

𝐽𝑓𝜽 ሶ − 𝐱 ሶ
2
= min

𝜽 ሶ
𝐽𝑓 ሶ𝜽 − 𝐱 ሶ

𝑇
𝐽𝑓 ሶ𝜽 − 𝐱 ሶ

𝛻
𝜽 ሶ

𝐽𝑓𝜽 ሶ − 𝐱 ሶ
2
= 2 𝐽𝑓

𝑇 𝐽𝑓𝜽 ሶ − 𝐱 ሶ = 0

𝜽 ሶ = 𝐽𝑓
𝑇 𝐽𝑓

−1
𝐽𝑓
𝑇 𝑥 ሶ

𝐴+ = (𝐴𝑇𝐴)−1𝐴𝑇

𝐽𝑓
+
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Pseudoinverse: Summary

1. Forward kinematics as a function:
𝒙 𝑡 = 𝑓(𝜽 𝑡 )

2. Derivation with respect to time:
𝑑𝒙(𝑡)

𝑑𝑡
= ሶ𝒙 𝑡 = 𝐽𝑓(𝜽) ሶ𝜽(𝑡)

3. Transition to the difference quotient:
Δ𝒙 ≈ 𝐽𝑓 𝜽 Δ𝜽

4. Reverse: Δ𝜽 ≈ 𝐽𝑓
+ 𝜽 Δ𝒙

ሶ𝒙 𝑡 ∈ ℝ6: TCP-velocities
ሶ𝜽 𝑡 ∈ ℝ𝑛: Joint velocities

𝐽𝑓 𝜽 ∈ ℝ6×𝑛: Jacobian Matrix

𝒙 𝑡 ∈ ℝ6: TCP-pose

𝛉 𝑡 ∈ ℝ𝑛: Joint angle positions

Δ𝒙 ∈ ℝ6: Errors in TCP-Pose

Δ𝜽 ∈ ℝ𝑛: Errors in joint positions
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Pseudoinverse: Iterative Approach

Given: Target pose of the TCP 𝒙𝑻𝑪𝑷, 𝒕𝒂𝒓𝒈𝒆𝒕
Wanted: Joint angle vector 𝜽 that realizes 𝑥𝑇𝐶𝑃, 𝑡𝑎𝑟𝑔𝑒𝑡
Iterative approach starting with initial 
configuration 𝜽𝟎 and 𝒙𝑻𝑪𝑷,𝟎

1. Calculate 𝒙𝑻𝑪𝑷,𝒕 in iteration 𝑡 from joint angle
positions 𝜽𝑡

2. Calculate error Δ𝒙 from 𝒙𝑻𝑪𝑷, 𝒕𝒂𝒓𝒈𝒆𝒕 and 
calculated 𝒙𝑻𝑪𝑷,𝒕

3. Use approximated inverse kinematic model 𝒈 to 
calculate joint angle error Δ𝜽

4. Calculate 𝜽𝑡+1 = 𝜽𝑡 + Δ𝜽

5. Continue with iteration 𝑡+1

𝒙 = 𝒇 𝜽 Δ𝜽 ≈ 𝒈(Δ𝒙)

_

+

𝒙𝑻𝑪𝑷, 𝒕𝒂𝒓𝒈𝒆𝒕

𝜽𝑡

Δ𝐱

Δ𝜽

𝜽𝑡𝑎𝑟𝑔𝑒𝑡

𝜽𝑡+1

𝒙𝑻𝑪𝑷,𝒕
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Pseudoinverse: Example Calculation (1)

Position:
𝑥 = 𝑙1 cos 𝜃1 + 𝑙2 cos 𝜃1 + 𝜃2
𝑦 = 𝑙1 sin 𝜃1 + 𝑙2 sin(𝜃1 + 𝜃2)

Velocity:
ሶ𝑥
ሶ𝑦
= 𝐽𝑓 𝜽 ⋅ ሶ𝜽 𝑡 = 𝐽𝑓 𝜽 ⋅

ሶ𝜃1
ሶ𝜃2

=

=
−𝑙1 sin 𝜃1 − 𝑙2 sin(𝜃1 + 𝜃2) −𝑙2 sin(𝜃1 + 𝜃2)
𝑙1 cos 𝜃1 + 𝑙2 cos(𝜃1 + 𝜃2) 𝑙2 cos(𝜃1 + 𝜃2)

⋅
ሶ𝜃1
ሶ𝜃2

𝑙2

𝑙1

𝜃1

𝜃2
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Pseudoinverse: Example Calculation (2)

The Jacobian matrix must be inverted:

Δ𝜃1
Δ𝜃2

=
1

𝑙1𝑙2 sin 𝜃2

𝑙2𝑐12 𝑙2𝑠12
−𝑙2𝑐12 − 𝑙1𝑐1 −𝑙1𝑠12 − 𝑙1𝑠1

𝐽𝑓 𝜽 −1

Δ𝑥
Δ𝑦

For 𝜃2 = 𝑛 ⋅ 𝜋, 𝑛 ∈ ℤ 𝐽𝑓(𝜽) is singular!

Abbreviations:
𝑐12 = cos(𝜃1 + 𝜃2)
𝑠12 = sin(𝜃1 + 𝜃2)
𝑐𝑖 = cos(𝜃𝑖)
𝑠𝑖 = sin(𝜃𝑖)



Robotics I: Introduction to Robotics | Chapter 0358

Pseudoinverse: Numerical Example (1)

2-DoF planar robot: 𝜽 = 𝜃1, 𝜃2 ∈ 𝐶

Target pose 𝒙𝐺𝑜𝑎𝑙 = 0, 1.2 𝑇

𝒙𝐺𝑜𝑎𝑙

𝜃1

𝜃2
e(𝜽) = 𝒙𝐺𝑜𝑎𝑙 − 𝑓 𝜽 2
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Pseudoinverse: Numerical Example (2)

2-DoF planar robot: 𝜽 = 𝜃1, 𝜃2 ∈ 𝐶

Target pose 𝒙𝐺𝑜𝑎𝑙 = 0, 1.2 𝑇

Step length: 𝛾 = 0.2

Start: 𝜽0 = 𝜋,
𝜋

2

𝑇

𝒙𝐺𝑜𝑎𝑙

𝜃1

𝜃2
e(𝜽) = 𝒙𝐺𝑜𝑎𝑙 − 𝑓 𝜽 2

𝜽0 = 𝜋, Τ𝜋 2 𝑇

𝜽7 ≈ 0.641,1.857 𝑇
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Pseudoinverse: Numerical Example (3)

2-DoF planar robot: 𝜽 = 𝜃1, 𝜃2 ∈ 𝐶

Target pose 𝒙𝐺𝑜𝑎𝑙 = 0, 1.2 𝑇

Step length: 𝛾 = 0.2

Different starting points: 

𝜽0 = 𝜋, 𝜃2,𝑠𝑡𝑎𝑟𝑡
𝑇

𝒙𝐺𝑜𝑎𝑙

𝜃1

𝜃2
e(𝜽) = 𝒙𝐺𝑜𝑎𝑙 − 𝑓 𝜽 2

Singularities at 
𝜃2 = 𝑛 ⋅ 𝜋
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Pseudoinverse: Singularities

Pseudoinverse is unstable in the vicinity of singularities

Ho to deal with singularities

Avoidance of singularities (not always possible)

Damped least squares
(also Levenberg-Marquardt Minimization)
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Pseudoinverse: Damped Least Squares (1)

The pseudoinverse 𝐽𝑓
+(𝜽) optimally solves the equation 𝐽𝑓 𝜽 Δ𝜽 = Δ𝒙 for Δ𝜽.

Optimal refers to the sum of the error squares

min
Δ𝜽

𝐽𝑓 𝜽 Δ𝜽 − Δ𝒙
2

Approach: Minimize instead (introduce regularization) 

with a damping constant 𝜆 > 0.

min
Δ𝜽

𝐽𝑓 𝜽 Δ𝜽 − Δ𝒙
2
+ 𝜆2 Δ𝜽 2
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Pseudoinverse: Damped Least Squares (2)

Approach:
min
Δ𝜽

𝐽𝑓 𝜽 Δ𝜽 − Δ𝒙
2
+ 𝜆2 Δ𝜽 2

This can be written as
𝐽𝑇𝐽 + 𝜆2𝐼 Δ𝜽 = 𝐽𝑇Δ𝒙

This results in
Δ𝜃 = 𝐽𝑇𝐽 + 𝜆2𝐼

∈ℝ𝑛×𝑛

−1
𝐽𝑇Δ𝒙 = 𝐽𝑇 𝐽𝐽𝑇 + 𝜆2𝐼

∈ℝ𝑚×𝑚

−1
Δ𝒙

Here: 𝐽 = 𝐽𝑓(𝜽), 𝑚 = 6
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Pseudoinverse: Damped Least Squares (3)

Solution:
Δ𝜃 = 𝐽𝑇𝐽 + 𝜆2𝐼

∈ℝ𝑛×𝑛

−1
𝐽𝑇Δ𝒙 = 𝐽𝑇 𝐽𝐽𝑇 + 𝜆2𝐼

∈ℝ𝑚×𝑚

−1
Δ𝒙

The damping constant 𝜆>0 must be chosen carefully to ensure numeric 
stability 

Large enough for numerical stability near singularities
Small enough for a fast convergence rate

Here: 𝐽 = 𝐽𝑓(𝜽)
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Numerical Methods: Stability Analysis (1)

Both approaches (pseudoinverse and damped least squares) can become unstable due 

to singularities.

Stability can be analyzed using singular value decomposition (SVD)

Singular value decomposition:  A matrix 𝐽 ∈ ℝ𝑚×𝑛 is represented by two orthogonal 

matrices 𝑈 ∈ ℝ𝑚×𝑚 and 𝑉 ∈ ℝ𝑛×𝑛 and a diagonal matrix 𝐷 ∈ ℝ𝑚×𝑛, in the form 

𝐽 = 𝑈𝐷𝑉𝑇

Without loss of generality: Singular values 𝜎𝑖 on the diagonal of 𝐷 are sorted

𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎𝑚 ≥ 0
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Numerical Methods: Stability Analysis (2)

Singular value decomposition : 𝐽 = 𝑈𝐷𝑉𝑇

The singular value decomposition of 𝐽 always exists and allows the following 
representation of 𝐽

𝐽 = 

𝑖=1

𝑚

𝜎𝑖𝒖𝑖𝒗𝑖
𝑇 =

𝑖=1

𝑟

𝜎𝑖𝒖𝑖𝒗𝑖
𝑇 ,

𝒖𝑖 and 𝒗𝑖 are the columns of 𝑈 and 𝑉,  𝑟 = 𝑟𝑎𝑛𝑔 𝐽.

The following applies to the pseudoinverse 𝐽+
(due to the orthogonality of 𝑈 and 𝑉):

𝐽+ = 𝑉𝐷+𝑈𝑇 =

𝑖=1

𝑟

𝜎𝑖
−1𝒗𝑖𝒖𝑖

𝑇
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Numerical Methods: Stability Analysis (3)

Reminder Damped Least Squares: Δ𝜃 = 𝐽𝑇 𝐽𝐽𝑇 + 𝜆2𝐼 −1Δ𝒙

The following applies to the inner matrix (to be inverted):

𝐽𝐽𝑇 + 𝜆2𝐼 = 𝑈𝐷𝑉𝑇 𝑉𝐷𝑇𝑈𝑇 + 𝜆2𝐼 = 𝑈 𝐷𝐷𝑇 + 𝜆2𝐼 𝑈𝑇

𝐷𝐷𝑇 + 𝜆2𝐼 is a non-singular diagonal matrix with the diagonal entries 𝜎𝑖
2 + 𝜆2. 

Therefore, 𝐷𝐷𝑇 + 𝜆2𝐼 −1 is a diagonal matrix with the diagonal entries 𝜎𝑖
2 + 𝜆2

−1

It follows:

𝐽𝑇 𝐽𝐽𝑇 + 𝜆2𝐼 −1 = (𝑉𝐷𝑇 𝐷𝐷𝑇 + 𝜆2𝐼 −1𝑈𝑇 =

𝑖=1

𝑟
𝜎𝑖

𝜎𝑖
2 + 𝜆2

𝒗𝑖𝒖𝑖
𝑇
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Numerical Methods: Stability Analysis (4)

Pseudoinverse:

𝐽+ =

𝑖=1

𝑟
1

𝜎𝑖
𝒗𝑖𝒖𝑖

𝑇

→∞ (𝜎𝑖→0)

Damped Least Squares:

𝐽𝑇 𝐽𝐽𝑇 + 𝜆2𝐼 −1 =

𝑖=1

𝑟
𝜎𝑖

𝜎𝑖
2 + 𝜆2

𝒗𝑖𝒖𝑖
𝑇

→0 (𝜎𝑖→0)

The inversion of 𝐽 has a similar form in both cases.

The pseudo inverse becomes unstable when a 𝜎𝑖 → 0 (singularity)

For large 𝜎𝑖 (compared to 𝜆), Damped Least Squares behaves like the pseudo inverse

For 𝜎𝑖 → 0, Damped Least Squares behaves well-defined
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Damped Least Squares: Example (1)

2-DoF planar robot: 𝜽 = 𝜃1, 𝜃2 ∈ 𝐶

Target pose 𝒙𝐺𝑜𝑎𝑙 = 0, 1.2 𝑇

𝒙𝐺𝑜𝑎𝑙

𝜃1

𝜃2
e(𝜽) = 𝒙𝐺𝑜𝑎𝑙 − 𝑓 𝜽 2
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Damped Least Squares: Example (2)

2-DoF planar robot: 𝜽 = 𝜃1, 𝜃2 ∈ 𝐶

Target pose 𝒙𝐺𝑜𝑎𝑙 = 0, 1.2 𝑇

Step length: 𝛾 = 0.5

Damping: 𝜆 = 0.5

Start: 𝜽0 = 𝜋,
𝜋

2

𝑇

𝜃1

𝜃2
e(𝜽) = 𝒙𝐺𝑜𝑎𝑙 − 𝑓 𝜽 2

𝜽0 = 𝜋, Τ𝜋 2 𝑇

𝜽12
≈ 0.615,1.900 𝑇

𝒙𝐺𝑜𝑎𝑙
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Damped Least Squares: Example (3)

2-DoF planar robot: 𝜽 = 𝜃1, 𝜃2 ∈ 𝐶

Target pose 𝒙𝐺𝑜𝑎𝑙 = 0, 1.2 𝑇

Step length: 𝛾 = 0.5

Damping: 𝜆 = 0.5

Different starting points:

𝜽0 = 𝜋, 𝜃2,𝑠𝑡𝑎𝑟𝑡
𝑇

𝜃1

𝜃2
e(𝜽) = 𝒙𝐺𝑜𝑎𝑙 − 𝑓 𝜽 2

𝒙𝐺𝑜𝑎𝑙
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Comparison: Pseudoinverse vs. Damped Least Squares

Singularities at 𝜃2 = 𝑛 ⋅ 𝜋, 𝑛 ∈ ℤ

𝜃1

𝜃2
Pseudoinverse

𝜃2

𝜃1

Damped Least Squares

𝜃1
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Overview

Inverse kinematic problem

Closed-form methods
Geometric  
Algebraic  

Numerical methods
Gradient descent
Jacobian based and pseudoinverse based methods 

Summary
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Summary: Kinematics

Direct kinematics:
𝑓: ℝ𝑛 → ℝ𝑚 𝒙 = 𝑓 𝜽

Inverse kinematics:
𝐹: ℝ𝑚 → ℝ𝑛 𝜽 = 𝐹 𝒙

Cases:
There is a unique solution. 

There is a finite number of solutions.

There is an infinite number of solutions.

No solution exists. 



Robotics I: Introduction to Robotics | Chapter 0375

Important Spaces in Robotics

𝐸(𝑱) 𝑅(𝑱)

𝑁(𝑱) 𝑆(𝑱)
𝑱 𝜽 ∙ ሶ𝜽 = 0

ሶ𝒙 = 𝑱 𝜽 ∙ ሶ𝜽

ሶ𝐶 ሶ𝑊
“Effective” space 
∀ ሶ𝜽 ∈ 𝐸: ሶ𝒙 = 𝑱 𝜽 ∙ ሶ𝜽 ≠ 0

Joint velocity space End-effector velocity space

Singularity space
Null space (self-motion)
∀ ሶ𝜽 ∈ 𝑁: ሶ𝒙 = 𝑱 𝜽 ∙ ሶ𝜽 = 0


