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Overview ﬂ(IT

Karlsruhe Institute of Technology

B Inverse kinematic problem

® Closed-form methods
@ Geometric
W Algebraic

® Numerical methods
® Gradient descent
® Jacobian based and pseudoinverse based methods

® Summary
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Forward Kinematics ﬂ(IT

Karlsruhe Institute of Technology

Direct kinematic problem
Input: Joint angle positions of the robot
Output: Pose of the end effector
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Inverse Kinematics ﬂ(IT

Karlsruhe Institute of Technology

Inverse kinematic problem:
® Input: Target pose of the end effector
® Output: Joint angle positions
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Inverse Kinematics

.- -.--
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Overview: Direct and Inverse Kinematics ﬂ(IT

Joint angle Transformation Cartesian coordinates
(configuration space) (task space)

Direct Kinematics

X =f(6)

(64, ...,0,) ECS R XxXEW =R™M

Inverse Kinematics
0=fFf"1(X) e.g. position and location

of the end effector xr.p

=%y zapB,7)

n: Degrees of freedom of movement
m: Degrees of freedom

D
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Inverse Kinematics: Problem Definition S(IT

Karlsruhe Institute of Technology

Joint space Cartesian space
(configuration space) (task space)
(04,..,0,) ECSR" Direct Kinematics W = R™

Inverse Kinematics

n: Degrees of freedom of movement
m: Degrees of freedom
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Inverse Kinematics: Bijection S(IT

Karlsruhe Institute of Technology

Direct Kinematics: x=f(0), xeW,0ecC
Inverse Kinematics: 0=f"1x

Inverse function f~1 only exists if f is bijective (injective und surjective)

Function f: C — W is injective if for each element in W there is at most one
element from C (none at all, exactly one, but not more than one)

f(0,) =f(0,)=>6,=0,

Function f: C — W is surjective if for each element in W at least one element from

C exists
vxeW:30€(C: f(B)=x

In general, the forward kinematics f is not bijective

&
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Inverse Kinematics: Injection ﬂ(IT

Karlsruhe Institute of Technology

Forward kinematics is generally not injective (f (x1) = f(x,) = x; = x5)

« XTcp « Xrcp “« Xrcp

0= (01, 02) € C, P = (q)li CDZ) eC

f(0) = f(®) = xrcp

f_l(xTCP) = ?, 0 or ®?

&
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Inverse Kinematics: Surjection ﬂ(IT

Karlsruhe Institute of Technology

Forward kinematics is generally not surjective (Vvx € W: 380 € C: f(08) = x)

o< XGoal

f(0) € R? f_l(xGoal) =?

There is no @ € C for which f(8) = x4
Can be partially remedied by defining the workspace W c R?.

&
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Inverse Kinematics: Example of a 2 DoF Robot (1) ﬂ(IT

Karlsruhe Institute of Technology

® Position of the end effector (forward kinematics)

cos 6; + cos(6, + 6,)
x=f@) = (ST )
sin 8, + sin(6; + 6,)
® For a given target position x4, the distance from k=t X

the current position to the target is:
Ax = |Ixgoa — x |l

I
I
I
]

~
I
I
'\\H’

® Inverse kinematics: Find @ for which Ax = 0.

D
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Inverse Kinematics: Example of a 2 DoF Robot (2) ﬂ(IT

Karlsruhe Institute of Technology

How does the distance change Ax
for different joint angles 8 = (64, 6,)?
for different target positions xX;,4;?

Concrete: Xcpq1 = (O,ﬁ)T

. T T 3T 31
Solutions: 61 = (—,—) or 0, = (—,—)
4’2 4 7 2
4 ~
XGoal XGoal

N

e
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Inverse Kinematics: Example of a 2 DoF Robot (3) ﬂ(IT

Karlsruhe Institute of Technology

® What happens at x;,4; = (0, 2.1)7 outside the workspace?
® No solutions

Ax = ||xXgoar — x |l

6,

2n

NIE]

13
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Inverse Kinematics: Example of a 2 DoF Robot (4) ﬂ(IT

® How does the distance Ax change for x;,, = (0,0)7?

® Infinite number of solutions: @ = (64, )

@ 0, = m: The second arm element is folded ; Ax = |[xgoar — x ||
onto the first arm element

@ 0, can be selected as required

1
I
1
L
I
I
1
I
1
1
1
I
1

91 as Goal
required
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Inverse Kinematics: Example of a 2 DoF Robot (5) ﬂ(IT

Karlsruhe Institute of Technology

y = 0.0000

Xgoar = (O, Y)T

Ax = ||xXgoar — x |l
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Inverse Kinematics: Example of a 2 DoF Robot (6) ﬂ(IT

Karlsruhe Institute of Technology

How does Ax change for different target positions x;,4; = (O ygoal)

ygoal = 1. 0 ){goal = 11 Ygoal = 12 ygoal = 13
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Inverse Kinematics: Example of a 2 DoF Robot (7)

In the case of a 2 DoF planar robot, there are four different cases:
® There are two independent solutions (normal case).

® There is exactly one solution (boundary of the workspace).

® There is no solution (outside the workspace).

® There are infinitely many solutions (target point in the base).

V' A

Two solutions One solution No solution

Robotics I: Introduction to Robotics | Chapter 03
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0, as
required

XGoal

Infinitely many solutions

H2T



KIT

Karlsruhe Institute of Technology

Inverse Kinematics: Example of a 3 DoF Robot

3 DoF robot: What does the solution space look like?

XGoal = (0, y)T

Ax = ||xXgoar — x |l

|

:‘/ XGoal
|
1

y = 0.0000

o___
N3
~1
¥
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Inverse Kinematics: Procedure

Pose of the TCP
nx OX ax px
. (™ 9 4 Py
Tep n’Z OZ aZ pZ
0 0 0 1
Kinematic model:
Ref
Trep = °f Trcp(0) = Ag 1(64) - A12(92) cAp_op- 1(On—1) - Ay 1.n(0n)

Given: Trcp, Wanted: 6
Approach: Solve the equation for 8 (non-linear problem)

&
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Overview ﬂ(IT

Karlsruhe Institute of Technology

@ Inverse kinematic problem

® Closed-form methods
@ Geometric
W Algebraic

® Numerical methods
® Gradient descent
® Jacobian based and pseudoinverse based methods

® Summary

&
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Geometric Method: Procedure ﬂ(IT

Karlsruhe Institute of Technology

® Use geometric relationships to determine the joint angles 8 from the Trcp
® The kinematic model is not used directly.

Application of:
® Trigonometric functions
® Sine / cosine theorems

&
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Geometric Method: Example ﬂ(IT

Karlsruhe Institute of Technology

A

y __________________

v

With cosine theorem:
x2+y?2=1012+1% —2l1l,cos(8,)

x2+y? -1 - 12
cos(62) = - yzz l : @‘ “COSD
\_ 142

\/
u

&
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Geometric Method: Example (2)

12 =x%2+4+y2+12 — 21, \/x% + y? cos(y)

Robotics I: Introduction to Robotics | Chapter 03

A

y __________________

v

2492412 12
- cos =z L2
(l/J) 211/ x2+y2

w

Y = acos (w)

KIT
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Geometric Method: Example (3) ﬂ(IT

Karlsruhe Institute of Technology

A

y __________________

&
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Geometric Method: Polynomialization ﬂ(IT

Karlsruhe Institute of Technology

Transcendental equations are usually difficult to solve, as the variable 0
usually appears in the form cos 6 or sin 6.

Tool: Substitution (Tangent half-angle substitution)
u = tan (2)
2

2

Using:

1—u 2Uu

> sinf = —;
1+u 1+u

cos @ =

=» Solving polynomial equations

&
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Overview ﬂ(IT

Karlsruhe Institute of Technology

@ Inverse kinematic problem

® Closed-form methods
@ Geometric
B Algebraic

® Numerical methods
® Gradient descent
® Jacobian based and pseudoinverse based methods

® Summary

&
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Algebraic Methods ﬂ(IT

Karlsruhe Institute of Technology

® Equating the TCP pose Trcp and transformation RefTTCP from the kinematic
model:
Trep = RefTTcp )

@ Comparison of the coefficients of the two matrices

a1 .- Qqn bll bln
anl Ll ann bnl es bnn

® 16 equations for homogeneous matrices in 3D (4 trivial: 0 = 0,1 = 1)
=» 12 non-trivial equations

&
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Algebraic Methods: Example (1)

@ From kinematic model

iz —S12 0 lijcy +1¢q,

RefT — S12 C12 0 l1$1 + ZZSIZ
Tep 0 0 1 0
0 0 0 1

C1p = cos(@1 + 02); S, = sin(6, +6,)

@ Desired position of the end effector in space:
Position (x, y), orientation(¢)

Cp —S¢ 0 x
S C 0 vy

P = | 29 ¢
Yo o0 10
0 0 0 1

&
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Algebraic Methods: Example (2)

Coefficient comparison

cp —S¢ 0 X 12 —S12 0 licg +1heq
S € 0y _[S12 ¢z O l1s1 + 1,515
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1

Cp = C12 (D

S¢ = S12 (2)

X = l]_C]_ + l2C12 (3)
y=lis; + 13812 (4)

=» Resolve for 8

&
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Algebraic Methods: Example (3)

Sum of the squares of (3) and (4)

x? = licf + 2lyc1lycq5 + 5,
y? = 1§s{ + 21511581, + 1357,

st+ct=1; sh+ci =1

xz + yz = l% + l% + 2l1l2(C1C12 + 51812) = l]z_ + l% + 2l1l2C2

X2 +y?— 12— 12 @
2= 201, -

Two solutions for 8, are possible. Why?
=» Redundancy

30 Robotics I: Introduction to Robotics | Chapter 03
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Algebraic Methods: Example (4) ﬂ(IT

Karlsruhe Institute of Technology

Calculation of 04

® Coefficient comparison:
X = l1C1 + l2C12, y = l1$1 + l2512

® Addition theorem: cos(8; + 8,) = cos(8;) cos(8,) — sin(6,) sin(H,)

x =lic; + 15(c16, — 5157)

- y = 1151 + 1(s1¢3 + 53¢1)
® Simplify:
x = (I + Lex)er — (Uzs2)sq

y = (l; +13c3)s1 + (I382)cq

Resolution difficult.
Help with templates for typical equations or symbolic math in Matlab, Maple, Mathematica.

&
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Algebraic Methods: Solution algorithm ﬂ(IT

Karlsruhe Institute of Technology

Problem:
Often not all joint angles can be determined from the 12 equations.

Approach:
Knowledge of the transformations increases the chance of solving the

equations.

Given:
The transformation matrices Ag1 - A1 2 ..t Ap—1n and Trep

Wanted:
The joint angles 6;to 6,,

&
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Algebraic Methods: Procedure ﬂ(IT

stitute of Technology

Trep = A0,1 (91) ’A1,2 (92) ’Az,s (93) 'A3,4(94) 'A4,5(95) 'A5,6(96)

&
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Algebraic Methods: Procedure ﬂ(IT

Karlsruhe Institute of Technology

W Starting point: the matrix equation
Trcp = Ao (61) Aq (62) Ay (63) 'A3,4(34) 'A4,5(95) ‘A5,6(96)

@ Procedure:
1. Invert Ay 1(6;) and multiply both sides of the equation by Aaj

2. Try to find an equation from the newly created system of equations that contains only one
unknown and solve this equation for the unknown.

3. Try to find an equation in the system of equations that can be solved by substituting the
solution found in the last step for one unknown.

4. If no more solutions can be found, another matrix (4; ,(6,)) must be inverted.
5. Repeat steps 1 - 4 until all joint angles have been determined.

&
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Algebraic Methods: Equations

KIT

Karlsruhe Institute of Technology

Trcp =Apq - A12 - A23 - A34 - Ays - A5

-1 _
Aot Trep = A1 - Azz - A3y Ass - Ase .

AI% 'A(_),% “Trep = A2,3 ‘A3,4 ‘A4,5 ‘A5,6
A3y AT Aot Trep = Aza-Ays - Asg
A3y Azs - ATs - AT - Trep = Ags - Asg
Ays A3 A3% - AT; - At - Trep = Ase

Trcp ‘Ag,é = AO,l ‘A1,2 ‘A2,3 'A3,4
Trcp ’AE,}, 'AZ,% = A0,1 'A1,2 ‘A2,3 ‘A3,4
Trcp 'Ag,é ‘AZ% 'ABT,}L = Ao A12 Az
Trep - Asg - Ags - Asa-Azz =Ag1 Ay

-1 4-1 . 4-1 . 4-1 . 2-1 _ )
Trep - Asg - Ays - Azs - Az3 - A1 = Ao

35 Robotics I: Introduction to Robotics | Chapter 03
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Overview ﬂ(IT

Karlsruhe Institute of Technology

@ Inverse kinematic problem

® Closed-form methods
@ Geometric
B Algebraic

® Numerical methods
® Gradient descent
® Jacobian based and pseudoinverse based methods

® Summary

&
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Numerical Methods: Jacobian Matrix (Repetition) -*-‘(IT

Karlsruhe Institute of Technology

Given a differentiable function f: R™ - R™

The Jacobian matrix contains all first-order partial derivatives of f. For an a € R" the
following applies:

0f1 _0f

; 6x1( ) axn( )
Jr(a) = (—l (a)) = : e RM*N
v\ 0 gy o U
d0xq 0x,
The following applies:
d
x(t) —f(—())—]f(H(t)) 0(t)

&
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Numerical Methods

Robotics I: Introduction to Robotics | Chapter 03

KIT

Karlsruhe Institute of Technology

TCP pose via forward kinematics:
Xrcpr = f(0¢)

Jacobian matrix provides movement tangents
in the current position 0,:
of (6;)
0.) =
JRCH 20,

Assumption: Model valid for small A8
Linear approximation of the movement
Approximation error & exists



Numerical Methods: Example ﬂ(IT

Karlsruhe Institute of Technology

&
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Overview ﬂ(IT

Karlsruhe Institute of Technology

Inverse kinematic problem

Closed-form methods
Geometric
Algebraic

Numerical methods
Gradient descent
Jacobian based and pseudoinverse based methods

Summary

&
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Gradient Descent: Optimization Problem ﬂ(IT

Karlsruhe Institute of Technology

® Forwards kinematics:
x = f(0), x €W c R™, 0 eCcR"

@ Error function for target pose x;,4; € W'
e(e) = ”xGoal — f(e) ”2
B Solutions for inverse kinematics for: e(8) = 0

® Approach: Gradient descent

&
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Gradient Descent: Derivation of the Error Function -A-‘(IT

Error function for target pose x;,4 € W' e(0) = ||xcoq — () |2
Derivation with chain rule: Vpiiﬁ):zllﬁf(;xbﬂzb)
de _ d(llxgoar — F(O) 1)) 9(xgoa — £(6))
00 9(xgoa — f(6)) 06
S:gj;g_écfoﬂflxm ’ g_; = —2- (Xgoas — f(e))T -J(0)

(xT- AT =47 - x

de\’ B T
<%> =2-77(0) - (f(8) — xgoa1)

D
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Gradient Descent: Algorithm .AJ(IT

Karlsruhe Institute of Technology

Error function for target pose x;,4 € W' e(0) = ||xcoq — f(0) ||?
Gradient: grad(e) = Z—z =2-J7(0) - (f(8) — x;0q1)

Select start configuration: 8, € C,i = 0

Step lengthy € R

As long as e(0;) > ernreshold: # Limit value
0iy1=0;—y-2 ’]T(ei) - (f(8;) — xX6oa1) # — Gradient
[=i+1

&
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Gradient Descent: Example (1)

® 2-DoF planar robot: 8 = (6,0,) € C

W Target pose X, = (0,1.2)7

Robotics I: Introduction to Robotics | Chapter 03

« XGoal

KIT

Karlsruhe Institute of Technology

o €(0) = lxgoq = £(8) |1
2 : i

2N EEEE TS 0 e I GO X

- 0.6

- 0.4

_______________________ - 0.2

o
1
1
I
|
© [ RS PR ———



Gradient Descent: Example (2) ﬂ(IT

Karlsruhe Institute of Technology

® 2-DoF planar robot: 8 = (6,0,) € C
W Target pose X;,q; = (0,1.2)T
W Gradient field

45 Robotics I: Introduction to Robotics | Chapter 03



Gradient Descent: Example (3) ﬂ(IT

Karlsruhe Institute of Technology

2-DoF planar robot: 8 = (64,60,) € C
Target pose X, = (0,1.2)7 6,

(9) — ”xGoal - f(e) |2
Gradient field | '

Step length: y = 0.2 ¥
T
Start: 8, = (n, —) )
2
« XGoal o6
0 _____i ____________ 0.2

n
2

|
NE
N
p=|
D
=

&
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Gradient Descent: Example (4) ﬂ(IT

Karlsruhe Institute of Technology

2-DoF planar robot: 8 = (64,60,) € C
Target pose X;,q = (0,1.2)T
Gradient field

Step length: y = 0.2
Different starting points:

T
0, = (T[, Qz,start) « XGoal

47 Robotics I: Introduction to Robotics | Chapter 03
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Overview ﬂ(IT

Karlsruhe Institute of Technology

@ Inverse kinematic problem

® Closed-form methods
@ Geometric
W Algebraic

® Numerical methods
® Gradient descent
® Jacobian based and pseudoinverse based methods

® Summary

&
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Numerical Methods: Difference Quotient ﬂ(IT

Karlsruhe Institute of Technology

1) Actual movement according to:
x(t) = J(6)6(t)

2) Approximate movement in the interval At using
the difference quotient:

Ax =~ J(0)AB

Approximation of the change by transition from the
differential quotient to the difference quotient

Linearization of the problem

&
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Numerical Methods: Inversion
® Achieved so far: Local, linear approach to forward kinematics
Ax = f(0+A0) — f(0) = ]:(0) - A0
® Wanted: Solution for the inverse problem
A8 ~ g(Ax) = J7(0) - Ax
® Inversion is possible if:

® /((8) is quadratic (Non-redundant robots, d.h.n = m)
® /+(0) has full rank

Robotics I: Introduction to Robotics | Chapter 03
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Numerical Methods: Pseudoinverse ﬂ(IT

Pseudoinverse: Generalization of the inverse matrix to singular and non-
square matrices A € R™ "™ (redundant robots)

Definition: Moore-Penrose Pseudoinverse (with full line rank*)

At = AT(AAT)—l

The following apply:
(A" =4
(AT)+ — (A+)T
(AT = 1714%, foradl # 0

*Full line rank is usually given for /. Exception: singularities!

D
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Pseudoinverse: Derivation .AJ(IT

Karlsruhe Institute of Technology

Calculate the best possible solution of a system of linear equations in terms of the
sum of least squares.

Ax=Db // A is a rectangular matrix, not invertible
ATAx = ATh // AT A is a square matrix, invertible

(ATA) 1ATAx = (ATA)1ATh
i

X =(ATA)"*AT b //X is aleast squares solution of Ax = b
At

x=A%b // AT is the pseudo-inverse of A

&
52 Robotics I: Introduction to Robotics | Chapter 03 H2T



Pseudoinverse "AJ(IT

2
; it finds the norm-minimal

® The pseudo inverse minimizes the error ||]f9 — x|
solution ||@]|°

min[|/;8" - x| = min (/6 -x)" (6 - x)

7 o x| =27 (6 -x) =0

0 =(Jf ) Jj x At = (ATA)~1AT
g —~ /)
Jf

&
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Pseudoinverse: Summary

1. Forward kinematics as a function:

x(t) = f(6(1))

2. Derivation with respect to time:

=8 = k() = J£(8)8(t)

3. Transition to the difference quotient:

4. Reverse: A@ =~ Jf(6)Ax

Robotics I: Introduction to Robotics | Chapter 03

KIT

Karlsruhe Institute of Technology

x(t) € R®: TCP-pose
0(t) € R": Joint angle positions

x(t) € R®: TCP-velocities
0(t) € R™: Joint velocities
J£(6) € R®*™: Jacobian Matrix

Ax € R®: Errors in TCP-Pose
A@ € R": Errors in joint positions



Pseudoinverse: Iterative Approach ﬂ(IT

Karlsruhe Institute of Technology

@ Given: Target pose of the TCP X7¢p, target
® Wanted: Joint angle vector @ that realizes X7¢p, target

B [terative approach starting with initial
configuration 8¢ and Xy¢p o
1. Calculate xp¢py in iteration t from joint angle
positions 6, x = £(0) A ~ g(Ax)
2. Calculate error Ax from X7¢p, target and

calculated xrcp; T 0

3. Use approximated inverse kinematic model g to
calculate joint angle error A8 041

4. Calculate 8,1 = 0, + A0
5. Continue with iteration t+1

XTcp, target

XTCPt

Ax

&
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Pseudoinverse: Example Calculation (1)

@ Position:
x =1, cos6; + 1, cos(0; + 6,)
y = l]_ Sin 91 + l2 Sin(Hl -+ 02)

W Velocity: .
X — . € — . 91 —
(3) =@ 6@ = ;@ ( 92) -

_ (_ll sin 81 — l2 Sin(Hl + 02) —lz Sin(91 + 62)) . 91
~ \lycosB; +1,cos(6; +0,) 1,cos(6;+6,) 0,

&
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Pseudoinverse: Example Calculation (2) -AJ(IT

Karlsruhe Institute of Technology

® The Jacobian matrix must be inverted:

(Ael) _ 1 ( Y 5515 )(Ax)
AB,) l1l; sin 6, =101 —licy —l3s15 — 1151/ \Ay

—

J5(6)71
Abbreviations:
c1, = cos(6, + 65)
S12 = sin(6; + 6,)
c; = cos(6;)
WForf, =n-m n€Z Js(0)issingular! s; = sin(6;)

&
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Pseudoinverse: Numerical Example (1) ﬂ(IT

Karlsruhe Institute of Technology

2-DoF planar robot: 8 = (64,60,) € C

Target pose Xgoq; = (0, 1.2)" 0, e(H) = |1Xgoar — £(6) |2

Dy ™ e e e e, o P e e e e

g

- 0.6

- 0.4

____________________________ - 0.2

o
1
|
]
1
© [ SR PR ———
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N
N
=]
>
=
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Pseudoinverse: Numerical Example (2) ﬂ(IT

Karlsruhe Institute of Technology

2-DoF planar robot: 8 = (64,60,) € C

Target pose Xgoq; = (0, 1.2)" 0, e(B) = IXgoar — £(6) |2

Dy ™ e e e e, o P e e e e

Step length: y = 0.2
T
Start: 0, = (n, g)

g

n
0o = (m,m/2)"
« XGoal L 0.6

2 1
i L 0.4
: 0, ~ (0.641,1.857 )7

o U, NN 0.2
1
i
. —L 0.0
0 g m

Y

2mn 91

&
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Pseudoinverse: Numerical Example (3) ﬂ(IT

Karlsruhe Institute of Technology

2-DoF planar robot: 8 = (64,60,) € C
Target pose X;,q = (0,1.2)T

Step length: y = 0.2

Different starting points:
T

0, = (T[, 92,start)

« XGoal

- 0.8

- 0.6

Singularities at

62=n'77:

- 0.4

«| 0.2
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Pseudoinverse: Singularities ﬂ(IT

Karlsruhe Institute of Technology

B Pseudoinverse is unstable in the vicinity of singularities

@ Ho to deal with singularities
® Avoidance of singularities (not always possible)

B Damped least squares
(also Levenberg-Marquardt Minimization)

&
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Pseudoinverse: Damped Least Squares (1)

KIT

Karlsruhe Institute of Technology

® The pseudoinverse ]}’ (0) optimally solves the equation J(8)A@ = Ax for AB.

® Optimal refers to the sum of the error squares
2
' A — A
min|[/¢(6)A6 — Ax]|

® Approach: Minimize instead (introduce regularization)

min||/- ()46 — Ax||® + 22]140]12

with a damping constant 4 > 0.
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Pseudoinverse: Damped Least Squares (2) -AJ(IT

stitute of Technology

Approach: 5
rggn”]f(e)AH — Ax||” + 22128617

This can be written as
JT] +22DA0 = JTAx

This results in 4 4
A =T+ 22D JTAx=]T(JJT +2%) " Ax

eRhXTL eRThXTn

Here: ] = J7(0), m =6

&
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Pseudoinverse: Damped Least Squares (3) ﬂ(IT

Karlsruhe Institute of Technology

@ Solution: 4 4
A= (JT]+22D) JTAx=]" (JJT +2*1) Ax

ERhXTl ERThXTn

® The damping constant A>0 must be chosen carefully to ensure numeric
stability
® Large enough for numerical stability near singularities
® Small enough for a fast convergence rate

W Here: ] = J+(0)

D
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Numerical Methods: Stability Analysis (1) ﬂ(IT

Karlsruhe Institute of Technology

® Both approaches (pseudoinverse and damped least squares) can become unstable due
to singularities.

@ Stability can be analyzed using singular value decomposition (SVD)

® Singular value decomposition: A matrix ] € R™*" is represented by two orthogonal
matrices U € R™ ™ and V € R™" and a diagonal matrix D € R™*", in the form
J=UDvT
® Without loss of generality: Singular values g; on the diagonal of D are sorted
01 =20, 220, =0

D
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Numerical Methods: Stability Analysis (2) -AJ(IT

Karlsruhe Institute of Technology

Singular value decomposition : ] = UDVT

The singular value decomposition of J/ always exists and allows the following
representation of |

m T
_ T _ T
] = z oiu;v; = z oiu;v; ,
i=1 i1

Uu; and v; are the columnsof U and V, r = rang J.

The following applies to the pseudoinverse J*
(due to the orthogonality of U and V):

r
Jt=VvD*tUT = 2 o ‘v;u;

i=1
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Numerical Methods: Stability Analysis (3) ﬂ(IT

Karlsruhe Institute of Technology

® Reminder Damped Least Squares: A8 = JT(JJT + 221)"1Ax

® The following applies to the inner matrix (to be inverted):

JJT + 221 = (UDVT)(vDTUT) + 221 = U(DDT + A2DHUT

® DDT + A%[ is a non-singular diagonal matrix with the diagonal entries al-z + 2.

Therefore, (DDT + A21)~1 is a diagonal matrix with the diagonal entries (/7 + /12)_1

® |t follows: .
JTgIT+ 22Dt = (vDT(DDT + 22D)7UT = z

=1

0;
of + A2

viu!

&
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Numerical Methods: Stability Analysis (4)

Pseudoinverse:

1
Jt= Z ;viuiT
l

i=1 N e’
—00 (o‘i—)o)

Damped Least Squares: .

O-.
JUTHRDT = ) vl
.=1 L
l ~0 (0;-0)

The inversion of | has a similar form in both cases.

The pseudo inverse becomes unstable when a g; — 0 (singularity)

For large o; (compared to A), Damped Least Squares behaves like the pseudo inverse
For o; = 0, Damped Least Squares behaves well-defined
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Damped Least Squares: Example (1) ﬂ(IT

Karlsruhe Institute of Technology

2-DoF planar robot: 8 = (64,60,) € C
Target pose X;,q = (0,1.2)T
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Damped Least Squares: Example (2) ﬂ(IT

Karlsruhe Institute of Technology

2-DoF planar robot: 8 = (64,60,) € C
Target pose X;,q = (0,1.2)T

Step length: y = 0.5
Damping: A = 0.5

Start: 8, = (n,g)T

0= (mr,m/2)T

012
~ (0.615,1.900)"
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Damped Least Squares: Example (3) ﬂ(IT

® 2-DoF planar robot: 8 = (6,0,) € C
W Target pose X, = (0,1.2)7

W Step length: y = 0.5
® Damping: A = 0.5
W Different starting points:

0, = (T[, 92,start)T
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Comparison: Pseudoinverse vs. Damped Least Squares ﬂ(IT

Karlsruhe Institute of Technology

Singularitiesat 8, =n-m,n € Z
Pseudoinverse

0 Damped Least Squares
2 . :

hlr=—=sm=c=CE e 2N EEEEEETEEE 00 A sl e e I L

Nl‘:‘l“

n n
p - 0.6
n n
2 I 2 I
: - - 0.4
1 1
1 1
1 1
1 1 L
0 pe=ogmse (R — === === - — — el — = == = = = e o o o e 0.2
1 1
1 1
| |
—- 0.0
n 3 n 3
0 3 m = 2n 91 0 3 n an 2n 91

&
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Overview ﬂ(IT

Karlsruhe Institute of Technology

Inverse kinematic problem

Closed-form methods
Geometric
Algebraic

Numerical methods
Gradient descent

Jacobian based and pseudoinverse based methods

Summary

&
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Summary: Kinematics .AJ(IT

Karlsruhe Institute of Technology

Direct kinematics:
fr R*"> R™  x=f(0)

Inverse kinematics:
F: R™" > R" 0 =F(x)

Cases:
There is a unique solution.
There is a finite number of solutions.
There is an infinite number of solutions.
No solution exists.

&
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Important Spaces in Robotics ﬂ(IT

Karlsruhe Institute of Technology

“Effective” space | / Joint velocity space 7 End-effector velocity space
VO EE: k= J(B)- 6 #0 C 114

Null space (self-motion) : ,
VO EN: k= J(0)- 6 =0 Singularity space

&
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